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Abstract Elucidating structural determinants in the func-
tional regions of toxins can provide useful knowledge for
designing novel analgesic peptides. Glycine residues at the
C-terminal region of the neurotoxin BmK AGP-SYPU2
from the scorpion Buthus martensii Karsch (BmK) have
been shown to be crucial to its analgesic activity. However,
there has been no research on the structure–function rela-
tionship between the C-terminal segment of this toxin and
its analgesic activity. To address this issue, we performed
three MD simulations: one on the native structure and the
other two on mutants of that structure. Results of these
calculations suggest that the existence of glycine residues
at the C-terminal segment stabilizes the protruding topology
of the NC domain, which is considered an important deter-
minant of the analgesic activity of BmK AGP-SYPU2.

Keywords Bmk .Molecular simulation . Molecular
dynamics . Toxin

Introduction

Scorpion α-toxins are single-chain polypeptides consisting
of 60–72 amino acids [1–4]. These α-toxins can be divided
into three subfamilies according to their activities against
mammals and insects: classical α-toxins, α-like toxins, and

insect α-toxins [5, 6]. Classical α-toxins or anti-mammalian
toxins, such as Aah2 or Lqh2, are highly toxic to mammals
and weakly active towards insects [7, 8]. Insect α-toxins,
such as LqhαIT, have been found to be especially active
towards insects when tested by intracerebroventricular (icv)
injection [9–11]. The α-like toxins, such as BmK-M1, act
on both insects and mammals [12–14].

Most scorpion α-toxins share a common framework con-
sisting of three double-stranded antiparallel β-sheets linked
to a short α-helix, despite their pharmacological diversity
(Fig. 1) [15–17]. Extensive mutagenesis and three-
dimensional structural elucidation suggest that the putative
functional surface of a scorpion α-toxin can be divided into
two domains [18–20]. The NC domain consists of a five-
residue turn (residues 8–12) and a C-terminal segment (res-
idues 56–64). Residues in the loops preceding the α-helix
and between the β2 and β3 sheets form the core domain. It
has been shown that the core domain is involved in the
binding preference of the receptor. However, the NC domain
is considered to determine the toxin specificity, due to its
unique tertiary arrangement and the fact that changes in the
amino acid sequence have been observed. A flat topology of
the NC domain is suggested to play a role in the anti-
mammalian toxin, while a protruding conformation seems
crucial to high insecticidal potency (Fig. 2) [9, 21, 22].

BmK AGP-SYPU2 had been isolated and purified from
the venom of the B. martensii Karsch and shown to have
analgesic activity at the animal level [23]. A sequence
determination showed that the mature peptide is composed
of 66 amino acid residues and considered a classical α-toxin
according to sequence homology and phylogenetic analysis
(Fig. 3) [24]. Our previous studies showed that glycines
6566 of BmK AGP-SYPU2 are involved in its analgesic
activity, and that substitution of these two residues disturbs
its biological properties [25]. In this study, we investigate
the structure–function relationship of BmK AGP-SYPU2
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using molecular dynamics simulations. Based on the results
obtained, we suggest that glycines at the C-terminal segment
maintain the NC domain’s protruding topology, which is
associated with high analgesic activity.

Materials and methods

Atomic coordinates and model construction

The initial coordinates of BmK AGP-SYPU2 were retrieved
from the Protein Data Bank (PDB ID: 2KBH) [24]. The
same PDB file with reduced was used to construct two
mutants. The first mutant model was obtained by deleting
one glycine at the C-terminal end (Mut66) and the second
by deleting two glycines at the C-terminal end (Mut6566)
using the PyMOL software package [26].

Molecular dynamics

All simulations were performed using the Amber12 soft-
ware package together with the ff99SB parameters for pro-
teins, and the Ptraj module of Amber12 was used to analyze
the computational results [27, 28]. The starting models were
solvated in a rectangular box of TIP3P (explicit water mod-
el) water molecules with a minimum distance of 12 Å be-
tween any protein atom and the box boundaries. To
neutralize the models, three chloride ions were added [29].

Prior to MD simulation, a series of minimizations were
performed. All water molecules were first minimized while
restraining the positions of the atoms of the protein with a
harmonic potential. The whole system was then energy
minimized without restraint for 2,000 steps using a combi-
nation of the steepest descent and conjugated gradient

Fig. 1 The common fold of α-toxins. The α-helix is shown in red, the
β-strand in yellow, and the loops in green

Fig. 2 a 3D structures of the wild type (WT) of BmK AGP-SYPU2 and mutations of the WT. b Disposition of the NC domain (in red) in the WT
and its mutations. Note that this domain protrudes in the WT and is flat in Mut6566 toxin
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methods. After gradually heating the system from 10 to
300 K over 100 ps using the NVT ensemble, a 1 ns simu-
lation was performed at 1 atm and 300 K with the NPT
ensemble to equilibrate the whole system. For production
runs, MD simulations were performed in the NPT ensemble
for 100 ns.

For all simulations, all bonds involving hydrogen atoms
were constrained using the SHAKE algorithm [30]. A time
step of 2 fs and a non-bonded interaction cut-off radius of
10 Å were used. The particle-mesh Ewald (PME) method
was employed to calculate long-range electrostatic interac-
tions [31]. During the sampling process, the coordinates
were saved every 5 ps for further analysis.

Results and discussion

Global and local structural behavior

To the best of our knowledge, MD simulation is a suitable
tool for investigating the effect of mutations on protein
structure and dynamics [32–36]. In this work, conventional
MD simulations of three systems—BmK AGP-SYPU2 (the
wild type, WT), Mut66, and Mut6566—were carried out in
an explicit water model (TIP3P) for 100 ns. To gauge the
dynamic stabilities of the three simulated systems, the root
mean square deviations (RMSDs) of the heavy atoms from
their starting coordinates were calculated and plotted in
Fig. 4. The RMSD values for the WT and mutated systems
remained stable and followed the same trend, indicating that

the global structures of the three systems are quite similar to
that of the initial system. To clarify their local structural
features, the root mean square fluctuation (RMSF) per res-
idue was monitored. As shown in Fig. 5, the largest RMSFs
were seen for residues in the C-terminal segment. In partic-
ular, the overall fluctuations of residues 56–62 increased
when glycines 6566 were deleted. Our previous studies
showed that site-directed mutations of the C-terminal region
could affect the analgesic activity of BmK AGP-SYPU2. In
particular, the activity of Mut6566 was significantly de-
creased compared to that of BmK AGP-SYPU2. This indi-
cated that there is a strong correlation between the analgesic
activity and the C-terminal segment.

Toxin shape and size

To further study the effect of mutation on the structure of
BmK AGP-SYPU2, the average structures of the three sys-
tems during the last 5 ns of simulation were calculated. As
shown in Fig. 6, the spatial arrangements of the three sys-
tems are similar except for the orientation of the C-terminal
segment, in agreement with the discussion above. To quan-
tify the effects of mutation on the stability of the C-terminal
segment, the distance between the alpha carbon of His64 at
the C-terminal end and that of Lys41 in the loop connecting
the β2 and β3 strands was measured. As shown in Fig. 7,
this distance is generally smaller for the mutants than the
WT, and the distance for Mut6566 is the smallest, which
indicates that the C-terminal segment of Mut6566 shows the
largest deviations from the starting structure.

Fig. 3 Amino acid sequence of BmK AGP-SYPU2

Fig. 4 RMSD values of the WTand two mutations of the WT—Mut66
and Mut6566—as a function of simulation time (in ps)

Fig. 5 Changes in the positions of alpha carbons in the WT, Mut66,
and Mut6566 compared with their positions in the native state
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Moreover, it is clear that the C-terminal end of Mut6566
is far from the five-residue turn and close to the loop con-
necting the β2 and β3 strands, and the NC domain has a flat
topology in the absence of the Gly6566 residues. By con-
trast, the NC domain has a protruding topology in the WT,
whereas the topology of the NC domain in Mut66 is inter-
mediate between the NC domain topologies seen for
Mut6566 and the WT. Further analysis of the structure of
BmK AGP-SYPU2 suggests that the hydrophobic core of
the NC domain in Mut6566 is significantly disrupted, result-
ing in the flat topology of its NC domain, which leads to
significantly decreased analgesic potency of the protein.
Therefore, the conformation of the NC domain of the WT

is probably influential in the interaction of the WT with the
analgesic receptor, due to the protruding topology of its NC
domain.

Recently, two models of α-toxins complexed with the VS
domain of Nav1.2 have been proposed by Wang et al. and
Chen and Chung [37, 38]. Both of these models suggest that
the NC domain is involved in receptor site binding, even
though the complexes predicted by the models are different.
In the present study, our models show that the existence of
glycine residues at the C-terminal segment stabilizes the
protruding topology of the NC domain. When the NC do-
main has a protruding topology, it is conceivable that some
key amino acid residues in it are well positioned to interact
with the receptor site, and are thus important for the anal-
gesic activity of BmK AGP-SYPU2.

Conclusions

In the present study, we performed long-range MD simula-
tions of BmK AGP-SYPU2 and two mutant forms of it in
order to investigate the structural differences among these
molecules at the atomic level. The overall protein topologies
of the WT and the mutated systems were similar except for
the C-terminal segment. Mut6566 shows a significantly
different topology of the NC domain compared to that seen
in the WT, and exhibits no analgesic activity. We hope that
the work described in this paper provides a possible struc-
tural explanation for the change in analgesic activity that
occurs when the topology of the NC domain is modified
from flat to protruding, and that this information proves
useful in the design of new specific analgesic peptides.
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